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Abstract—In this article, we extend Cheng, Zhang and 

Wang [17] model studied pricing strategies in marketing. 

The objective is to find the optimal inventory and pricing 

strategies maximizing the net present value of total profit 

over the infinite horizon. It is important to control and 

maintain the inventories of deteriorating items for the 

modern corporation. We will discuss two models: one is 

without shortage, and the other is with shortage. By using 

the subroutine Find Root in commercial software 

Mathematical 5.2, we obtain the optimal solutions In this 

paper, we assume that the inventory objective is to minimize 

the total cost per unit time of the system. 

 

Index Terms—Trapezoidal Type Demand Rate, 

Deteriorating Items, Backlogging 

 

I. INTRODUCTION 

The effect of deterioration is very important in many 

inventory systems. Most of the literature assumes that a 

constant proportion of items will deteriorate per time-unit 

while they are in storage. Ghare and Schrader were the 

first proponents for developing a model for an 

exponentially decaying inventory, to consider 

continuously decaying inventory for a constant demand 

[1]. Covert and Philip used a variable deterioration rate of 

two-parameter Weibull distribution to formulate the 

model with assumptions of a constant demand rate and no 

shortages [2]. Shah and Jaiswal presented an order-level 

inventory model for deteriorating items with a constant 

rate of deterioration [3]. Dave and Patel first considered 

the inventory model for deteriorating items with time-

varying demand [4]. They considered a linear increasing 

demand rate over a finite horizon and a constant 

deterioration rate. Chang and Dye developed an EOQ 

model for deteriorating items with time-varying demand 

and partial backlogging [5]. Skouri and Papachristos 

presented a continuous review inventory model, with 

deteriorating items, time-varying demand , linear 

replenishment cost, partially time-varying backlogging 

[6]. Other researchers, there are many literatures that 

propose and evaluate the algorithms [7], [8], [9], [10], 

[11]. 

In the classical inventory model, the demand rate is 

assumed to be a constant. In reality, the demand for 

physical goods may be time-dependent, stock-dependent 

and price dependent. Hill first considered the inventory 

models for increasing demand followed by a constant 

demand [12]. M and al and Pal extended the inventory 

model with ramp type demand for deterioration items and 

allowing shortage [13]. Chen, Ouyang and Teng 

considered an EOQ model with ramp type demand rate 

and time dependent deterioration rate [14]. P and a, 

Senapati and Basu developed optimal replenishment 

policy for perishable seasonal products in a season with 

ramp-type time dependent demand [15]. Other 

researchers, there are many literatures that propose and 

evaluate the algorithms [16], [17], [18], [19], [20], [21], 

[22], [23], [24]. 

In this article, we extend Cheng, Zhang and Wang [17] 

model studied an economic production quantity (EPQ) 

model and pricing strategies. Assume the demand rate 

with continuous trapezoidal function of time, which is a 

positive linear function. The objective is to find the 

optimal inventory and pricing strategies maximizing the 

net present value of total profit over the infinite horizon, 

it is important to control and maintain the inventories of 

deteriorating items for the modern corporation. We will 

discuss two models: one is without shortage, and the 

other is with shortage. By using the subroutine FindRoot 

in commercial software Mathematica 5.2, we obtain the 

optimal solutions In this paper, we assume that the 

inventory objective is to minimize the total cost per unit 

time of the system. 

II. NOTATION AND ASSUMPTIOMS 

The mathematical model in this paper is developed on 

the basis of the following notations and assumptions. 

A. Notations 

0A  setup cost per setup. 

1C  unit holding cost per unit time. 

2C  unit deteriorating cost per unit time. 

3C  unit cost of lost sales. (i.e., Model 2). 

1t  point of time when inventory level is maximum. 

2t  point of time when all inventory is consumed. 

3t  the production restarting time when the model with 

shortage (i.e.,Model 2). 

4t  inventory cycle time when the model with shortage 

(i.e., Model 2). 

( )I t  on-h and inventory at time t over [0 , t2]. 

maxI  the maximum inventory level for each ordering 

cycle. 
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OC  ordering cost per cycle. 

HC  unit total holding cost per cycle. 

DC  unit deteriorating cost per cycle. 

SC  cost of lost sales per cycle. 

1TC  total cost for a production cycle. (i.e., Model 1). 

2TC  total cost for a production cycle. (i.e., Model 2). 

1TVC  total average cost for a production cycle. (i.e., 

Model 1). 

2TVC  total average cost for a production cycle. (i.e., 

Model 2). 

B. Assumptions 

In addition, the following assumptions are used 

throughout this paper. 

(1) A single item is considered and infinite planning 

horizon. 

(2) Lead time is zero. 

(3) The initial and final inventory levels are both zero. 

(4) There is no replacement. 

(5) Demand rate R = D(t) is assumed to be a ramp type 

function of time, where is the function defined as follows: 
 Demand rate 

    

                                    

    10b  

tba 11   

 

       0    1        2         T    

 

Figure 1.  The trapezoidal type demand rate 
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(6) ( ) ( )P t D t  is the production rate where   

(1 2)   is a constant. 

(7)   unit deterioration rate during time-span is  20, t . 

(8) Shortages are allowed to occur. (i.e., Model 2). 

III. MATHEMATICAL MODEL AND SOLUTION 

In this section, we will discuss two models: Model 1 is 

without shortage, and the Model 2 is with shortage. Here 

the trapezoidal type demand of an item is dependent on 

the relative size of 
1 2,  . 

A. Model 1: Model without Shortage. 

In this model 1, the production starts with zero stock 

level at time 0t   and the production stops at time 1t . 

Due to the combined effects of demand and deterioration 

of items, the inventory level gradually diminishes during 

the period  1 2;t t  and ultimately falls to zero at time 

2t t . 

The whole process is repeated and the behavior of the 

inventory system is depicted in “Fig. 2,” The inventory 

cycle here has the following four phases: 

 

Figure 2.  The inventory model without shortage 

Phase1. During the time interval  10,  the demand 

rate is 
0b t , the production rate is 

0b t  and the 

deterioration rate is 
1( )I t  at time t . Therefore, the 

inventory level at time t , is governed by  

 1

0

( )
( ) ( 1)

dI t
I t b t

dt
    , 

10 t    (1) 

with the boundary condition. 
1(0) 0I  . 

Phase2. During the time interval  1 1, t , from 

assumptions (5) and Figure 1 and Figures 2, we know 

that the demand rate is 
0b  the production rate is 

0b , and 

the deterioration rate is 
2 ( )I t  at time t . Therefore, the 

inventory level at time t , is governed by 

 2

2 0 1

( )
( ) ( 1)

dI t
I t b

dt
     , 

1 1t t    (2) 

with the boundary condition. 
2 1 1 1( ) ( )I I  . 

Phase3. In the time interval  1 2,t  , the system is 

affected by the combined the demand and deterioration. 

Hence, the inventory level at time t , is governed by 

 3

3 0 1

( )
( )

dI t
I t b

dt
    , 

1 2t t    (3) 

with the boundary conditions  

3 1 2 1( ) ( )I t I t , 3 2 4 2( ) ( )I I   

Phase4. In the time interval  2 2, t  the system is 

affected by the combined the demand and add the product 

expires accelerate the deteriorating of items into the 

model. Hence, the inventory level at time t , is governed 

by 

 4

4 1 1

( )
( ) ( )

dI t
I t a b t

dt
    , 2 2t t     (4) 

with the boundary conditions 
4 2( ) 0I t  . 

The solution to “(1),” is  

 0

1 2

( 1)(1 )
( )

t t te e e t b
I t

   



   
 , 10 t     (5) 

The solution to “(2),” with  
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1 1 1

1 0

1 1 2

( 1)(1 )
( )

e e e b
I

      





  

  is 

1

1 0

2 2

( 1)(1 )
( )

t te e e b
I t

   



   
 , 

1 1t t    (6) 

The solution to “(4),” is 

 

2 2( ) ( )

1 2 1

4 2

( 1 ) ( 1 (1 ))
( )

t t t t
e a t e t b

I t
   



   
      


 

2 2t t  
   (7) 

The solution to “(3),” with  
2 2

2 2

( )

1

( )

2 2 1

4 2 2

( 1 )

( 1 (1 ))
( )

t

t

e a

e t b
I

 

 


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



 

 

 

    
 , is 

2 2 2

2 2

3 1 1 02

1 2 2 1 2

1
( ) (( ) ( )

( (1 ) ( 1 ))),

tt t

t

I t e e e a e e b

b e t e t t

    

 

  


   

   

      

 (8) 

We have the maximum inventory level is given by 

max 3 1 2 1( ) ( )I I t I t  . 

 

1 1 1

1 2 2 1 2

2 2

1 0

2

1 1 0
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b e t e
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  

 


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





  

  

    


  (9) 

From “(9),” it is obvious that
2t is a function of

1t . As a 

result, the problem here has only one decision variable
1t .  

That is 

 

2 2

1 2

2 2

1 1

1 0

0 1

1 2 2

1 1
[ [ ( )

(( 1 )( 1 ) )

( (1 ) ( 1 ))

t

t

t Log e e a
b

b e e

b e t e

 
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  


  

 

 

 

     

    

 (10) 

The total cost per cycle consists of the following three 

elements: 

(a) The setup cost is OC= 0A . 

(b) The inventory holding cost is 

1 1 2 2

1 1 2

1 2 2 1

2 2

1 1

2 1

1 1
0

1 1 2 23

1 2 2

2 2 2

2 2 0
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( (2 ( ( ))
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( 2 ( 1 ) 2 ( 1 )
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HC C I t dt I t dt I t dt I t dt

e C a e e e t

b e t e
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 
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   

 
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22 ))))) 

 (11) 

(c) The inventory deteriorating cost is  

 

1 1 1

1

1 2 2

1 1 2

1 2 0 0 1 0
0 0

0 1 0 1

3 0 1 1 1 1 2

2 2

1 2 2 1 2 2

[

( ) ]

1
( (2 2 )

2

2 ( ) ( ))

t

t t

t

DC C b tdt b dt b tdt

b dt b dt a bt dt

C b t

a t b t

 





 

  

 

    

 

  

   

   

   

  

  
  (12) 

Therefore, the total cost per unit time during time-span 

 20, t  is  

 1 1 2

1 1 2

2

( , )
( , )

TC t t
TVC t t

t
   (13)  

where  

 
1 1 2 0 1 1( , )TC t t A HC DC    (14) 

Hence, the total relevant cost per unit time is a function 

of one variable
2t  because of “(13),” The necessary 

condition for 
1TVC  to be minimum is the optimal 

solution satisfies: 

  1

2

2

( ) 0
dTVC

t
dt

  (15) 

provided they satisfy the sufficient conditions 

  
2

1

22

2

( ) 0
d TVC

t
dt

 . (16) 

Due to the fact that
1t is a function of

2t , thus 

1 1 2( ; )TVC t t in “(13),” can be reduced as a function of
2t , 

we denoted it by
1 2( )TVC t , i.e., 

1 2( )TVC t =
1 1 2( ; )TVC t t . 

Hence, the problem faced by the vendor in Model 1 is 

Minimize 
1 2( )TVC t , 

1 20 t t  .  

To minimize the total cost per unit time, taking the first 

derivative of
1 2( )TVC t with respect to

1t , and setting the 

result to be zero, we obtain  

1 2

2

( )
0

dTVC t

dt
  

Let *

1t denoted the optimal value of
2t , and then *

2t  

must satisfy “(16),” Furthermore, we can see that the 

stationary point 2t  also satisfies the  

 
2

*1

22

2

( ) 0
d TVC

t t
dt

   

Due to the fact that 1t is a function of 2t , thus 

1 1 2( ; )TVC t t in “(13),” can be reduced as a function of 2t , 

we denoted it by 1 1( )TVC t , i.e., 1 2( )TVC t = 1 1 2( ; )TVC t t . 

Hence, the problem faced by the vendor in Model 1 is 

Minimize 1 2( )TVC t , Subject to: 1 20 t t  . 

Consequently, we can obtain the value of 2t from 

“(15),” Although we are unable to prove that the solution 

to “(15),” uniquely exits, the numerical examples in 

section 4 below indicate so. Once the optimal solution 2t  
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is obtained, the corresponding optimal value 
1t  can be 

determined from “(9),” 

B. Model 2. Model with Shortage 

In this model 2, the behaviors of inventory system is 

depicted in “Fig. 3,” 

 

Figure 3.  The inventory model with shortage 

The Phases 1, 2 ,3 and 4 are same as those in Model 1. 

Phase5. During the shortage interval  2 3,t t , the 

demand at time t  is backlogged. Thus, the inventory level 

at time t  is governed by the following differential 

equation:  

 5

1 1

( )
( )

dI t
a b t

dt
   , 

2 3t t t   (17) 

With the boundary condition, 
4 2( ) 0I t  .  

The solution of “(17),” is 

 5 2 1 2 1

1
( ) ( )( 2 ( )

2
I t t t a t t b     , 2 3t t t   (18) 

Phase6. During the shortage interval  3 4,t t the 

backorders level at time t , is governed by the following 

differential equation: 

 6

1 1

( )
( 1)( )

dI t
a b t

dt
    , 3 4t t t   (19) 

The solution to “(19),” is 

 6 4 1 4 1

1
( ) ( )( 1)( 2 ( ) )

2
I t t t a t t b        (20) 

with the boundary condition 6 4( ) 0I t  .  

Given the condition 5 3 6 3( ) ( )I t I t , we get 

 1 1 3( 1)( )a b t   3 4 1 3 4 1

1
( )( 1)( 2 ( ) )

2
t t a t t b       , 

  (21) 

From “(21),” it is obvious that 2t is a function of 3t . As 

a result, the problem here has only one decision 

variable 3t .  

2 2

1 1 2 1 4 1 4 1

1 2 2 2

2 1 4 1 4 1

3

1

4 4 ( 2 2 2
2

)

2

a b t a t a t a
a

t b t b t b
t

b

  






   
 

  
  

The total cost per cycle of the system consists of the 

following five elements: 

(a) The setup cost is OC=
0A .   (22) 

(b) The inventory holding cost is 
2 1HC HC   (23) 

(c) The inventory deteriorating cost is 
2 1DC DC   (24) 

(d) The cost of lost sales is  

3 4

2 3
2 3 4 5

2

2 4 2 3 4 3 4 1

3 2 2

2 2 3 3 4

3 3

4 3 1 3

[ ( ) ( ) ]

1
( 3(( )( 2 ) ( ) )

6

(2 3 3 ( 1 )

2 ( 1 ) ) ) )

t t

t t
SC C I t dt I t dt

t t t t t t t a

t t t t t

t t b C





 

   

       

    

   

 

 (25) 

Consequently, the total cost per unit time during time-

span  40, t  is  

 2 1 2 3 4

2 1 2 3 4

4

( , , , )
( , , , )

TC t t t t
TVC t t t t

t
  (26) 

where  

 
2 1 2 3 4 0 2 2 2( , , , )TC t t t t A HC DC SC     (27) 

From “(9),” and “(21),” we know that 
2t  is a function 

of 
1t , and 

4t is a function of 
2t  and 

3t Consequently, the 

decision variables in Model 2 can be reduced from four 

dimensions 
1 2 3 4( , , , )t t t t to two dimensions 

1 3( , )t t  , i.e., 

the problem faced by the vendor in this model is 

 (P2) Minimize 
2 1 3( ; )TVC t t  (28) 

Subject to: 
1 20 t t   , 

2 3 4t t t  .  

Our objective is to find the optimal values of 
1t  and 

3t  

such that 
2 1 3( ; )TVC t t  has minimum. That is, in order to 

find the optimal values of 
1t  and 

3t  , we have to solve the 

complex nonlinear equations 1 1 3

1

( , )
0

TVC t t

t





 and 

1 1 3

3

( , )
0

TVC t t

t





.  

 We can obtain the optimal values *

1t  and *

3t . Once we 

obtain the optimal value * *

1 3( ; )t t , the optimal solution 

* *

2 4( ; )t t  is obtained from “(9),” and “(21),”. 

IV. NUMERICAL EXAMPLES AND SENSITIVITY 

ANALYSIS 

By applying the subroutine, we obtain the optimum 

solution for *

1TVC  of “(13),”. Then by applying the 

subroutine the same package as above, the optimum 

solutions for *

2TVC  of “(26),”. In order to illustrate the 

above solution procedure, let us consider an inventory 

system with the following data. 

Example 1: For the model without shortage, we let 

0A =$200 per setup, 1C =$3/unit, 2C =$5/unit, 1 =2, 
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2 =8, 
0b =4000,  =1.3, 0.03  , 

1 400a  , 
1b =10 .In 

appropriate units. By using the subroutine FindRoot in 

commercial software Mathematica 5.2, we obtain the 

optimal solutions for *

1t , *

2t  and *

1TVC are given as *

1t = 

6.93075, *

2t = 21.7639 and *

1TVC = 10732. 

Example 2: For the model with shortage, we let 

0A =$200 per setup, 
1C =$3/unit, 

2C =$5/unit, 
3C =$6/unit, 

1 =2, 
2 =8, 

0b =4000,  =1.3, 0.03  , 
1a =400, 

1 10b  . In appropriate units. By using the subroutine 

FindRoot in commercial software Mathematica 5.2, we 

obtain the optimal solutions for *

1t ; *

2t ; *

3t ; *

4t  and *

2TVC  

are given as *

1t = 6.75599, *

2t = 15.7612, *

3t =71.5392, 

*

4t = 88.498 and *

2TVC = 6696.95. 

A. Sensitivity Analysis 

For studying the sensitivity analysis of the parameters 

on the proposed models, we changed (increasing or 

decreasing) the parameters by 25% and took one 

parameter at a time, kept the remaining parameters at 

their original values.  

The results are shown in Tables 1 and Tables 2 reveals 

the following points.  

TABLE I.  WITHOUT SHORTAGE MODEL (I.E., EXAMPLE 1) 

Changing 
parameter 

(%) 
change 

(%)change 
*

1t  *

2t  *

1TVC  

1C  25 -0.0025 -0.0285 23.7896 

 -25 0.0040 0.0464 -23.7888 

2C  25 -0.00014 -0.0018 1.1899 

 -25 0.00014 0.0018 -1.1890 

1  25 0.7866 19.8958 9.0095 

 -25 -0.5424 -15.5395 -12.9620 

2  25 24.0147 24.1703 20.6783 

 -25 -25.4750 -37.6123 -25.7842 

0b  25 -0.0434 17.8465 13.3861 

 -25 -0.2483 -18.8340 -16.8235 

1a  25 -0.6424 -22.9729 12.1599 

 -25 -2.0311 12.2726 -21.8193 

1b  25 -1.1775 -3.8573 -6.5011 

 -25 -0.8223 -15.7481 5.3951 

Example 1:  

(1) It can be found that the value *

1t  is highly sensitive 

to change in the value of 
2 . Moreover, *

1t is low 

sensitive to change in the value of 1C , 2C , 1 , 0b , 1a  

and 1b . 

(2) It can be found that the value *

2t  is highly sensitive 

to change in the value of 1 , 2 , 0b  and 1a . Moreover, 

*

2t is moderately sensitive to change in the value of 1b . In 

addition, *

2t  is low sensitive to change in value of 1C  and 

2C . 

(3) It can be found that the value *

1TVC  is highly 

sensitive to change in the value of 1C , 2 , 0b  and 1a . 

Moreover, *

1TVC is moderately sensitive to change in the 

value of
2C , 

1  and 
1b . 

TABLE II.  THE INVENTORY MODEL WITH SHORTAGE.(I.E., 
EXAMPLE 2) 

Changing 

parameter 
(%) change 

(%)change 
*

1t  *

2t  *

3t  *

4t  *

2TVC  

1C  25 -0.021 -0.287 0.065 0.063 7.426 

 -25 0.021 0.296 -0.066 -0.063 -7.477 

2C  25 -0.001 -0.015 0.003 0.003 0.373 

 -25 0.001 0.015 -0.003 -0.003 -0.373 

3C  25 0.018 0.248 -0.056 -0.054 17.146 

 -25 -0.029 -0.402 0.092 0.089 -17.206 

1  25 -0.008 -0.274 0.202 0.378 3.234 

 -25 0.511 0.317 -0.237 -0.447 -3.85 

2  25 22.840 -0.576 0.691 1.397 8.753 

 -25 -22.485 0.222 -0.511 -1.102 -5.343 

0b  25 -0.747 -0.430 0.301 0.557 4.869 

 -25 1.242 0.419 -0.303 -0.566 -4.923 

1a  25 -0.543 -18.26 21.942 -0.979 276.267 

 -25 -1.605 -7.272 -27.932 -26.556 -46.325 

1b  25 -1.103 -11.643 -24.5 -27.916 -3.106 

 -25 0.727 4.097 38.581 36.461 77.654 

Example 2:  

(1) It can be found that the value *

1t  is highly sensitive 

to change in the value of 
2 . Moreover, *

1t is low 

sensitive to change in the value of 
1C , 

2C , 
3C , 

1 , 
0b , 

1a  and 
1b . 

(2) It can be found that the value *

2t  is highly sensitive 

to change in the value of 
1a . Moreover, *

2t  is moderately 

sensitive to change in the value of 
1b . In addition, *

2t  is 

low sensitive to change in the value of 
1C , 

2C , 
3C , 

1 , 

2  and 
0b . 

(3) It can be found that the value *

3t  is highly sensitive 

to change in the value of 
1a  and 

1b . Moreover, *

3t  is low 

sensitive to change in value of 1C , 2C , 3C , 1 , 2  and 

0b . 

(4) It can be found that the value *

4t  is highly sensitive 

to change in the value of 1a  and 1b . Moreover, *

4t is 

moderately sensitive to change in the value of 2 . In 

addition, *

4t  is low sensitive to change in value of 1C , 2C , 

3C , 1  and 0b . 

(5) It can be found that the value *

2TVC  is highly 

sensitive to change in the value of
3C , 

1a  and 
1b . 

Moreover, *

2TVC is moderately sensitive to change in the 

value of 1C , 1 , 2  and 0b . In addition, *

4t  is low 

sensitive to change in value of 2C  and 1 . 
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V. CONCLUDING REMARKS 

In this article, we considering the inventory and pricing 

strategies. The objective is to find the optimal inventory 

and pricing strategies maximizing the net present value of 

total profit over the infinite horizon, it is important to 

control and maintain the inventories of deteriorating 

items for the modern corporation.  

This paper presented a methodology and provided 

numerical results related to trapezoidal type demand rate 

to find the optimal inventory policy. Two numerical 

examples are given to illustrate the solution procedure 

and sensitivity analyses have been shown. Example 1 is 

seen that the percentage change in the optimal total 

average cost per unit time is highly sensitive in 

parameters
2C , 

1 , 
2 , 

1a  and 
0b . Example 2 is seen 

that the percentage change in the optimal total average 

cost per unit time is highly sensitive in parameters 
3C , 

2 , 
1a  and 

1b . 

We think that such type of trapezoidal type demand 

rate is quite realistic and can provide for the further study 

of this kind of important inventory models from the 

market information. 
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